If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x+4x^2=0
a = 4; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·4·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*4}=\frac{-36}{8} =-4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*4}=\frac{0}{8} =0 $
| 2+13=-5(4x-3) | | 7x-35=3(x-9) | | x-1/5=1/7 | | -3(-6p+5)=-141 | | -7.50+1=x+2.50 | | 6-6x|-10=8 | | 0.5(6x-14)=2 | | 3t-17=3+4t | | -215=5(5+6n) | | 7(2v+1)=105 | | 6-6x-10=8 | | 2(x+5)-3=6x-4(-1+x) | | -4+6(n+7)=86 | | 16x+4=68 | | -4x+36=-8(x-3) | | 2(4x+6)=-24=28 | | 1/3=2k/6 | | 5+3.50b=19 | | 2(y+5)-4y=-8 | | -8+2/3+4=2x-2x-5-x | | -4x+36=-8(x-3 | | -14.2=v/7+3.3 | | y+-16=2 | | 15=1+2v | | (3-2i)-5i(4+i)=0 | | 4(m+72)=-72 | | (a-2)^4/3+7=23 | | 5/7(t+7)=+2/7t+23 | | 4x+1=1x | | 8m+11=75 | | 4x1/3=4/12 | | 5x-7x-12=-2x+5-12 |